BS101 Lab 6 Microarray MCQs

1. Genomics is the study of:
a. The structure and function of mutations and how they alter genetic traits.
b. Genes and the DNA sequences between genes and how they determine development.
c. The information provided by computer programs which analyzes mRNA.
d. The human genome as compared to other vertebrate genomes.
2. Microarrays are a very useful tool in genomics because they:
a. Help scientists examine intergenetic DNA by separating it from genes.
b. Provide a unique promoter region for polymerase chain reactions.
c. Allow scientists to examine thousands of genes all at once.
d. Decrease the time it takes for scientists to make copies of DNA.
3. Generally, every cell in our body contains the same 20,000 (or so) genes.  However, cells  in our body are different from each other because they:
a. Have different genes turned “on” or “off” to support different functions.
b. Contain different copies of genes for different functions.
c. Provide different nucleotide bases for each developmental function.
d. Function differently based on varying proteomics.

4. How can scientists determine the function of or differences between cell types?  They can examine the:
a. Number of nucleotide bases in genes versus intergenetic sequences.
b. Amount of mRNA expressed for each gene in a cell type, and then compare that information between cell types.
c. Amount of mutations between genes in the intergenetic spaces.
d. Number of tRNA copies for a particular cell type.

5. How is a microarray constructed?  In each spot, there are:
a. Copies of all the genes for an organism.
b. Multiple copies of one gene; each spot has copies for a different gene.
c. Multiple copies of intergenetic sequences, which bind to genes in the samples.
d. Copies of intergenetic sequences, which promote the replication of DNA in a sample.

6. The experiment that begins in Chapter 3 of the simulation seeks to answer the question:
a. What is the difference between intergenetic spaces in cancer cells versus healthy cells?
b. Why do different cell types express different amounts of mRNA?
c. How do different cancer cells produce different mutations?
d. What is the difference between healthy cells and cancer cells?7. Why can’t doctors use cell appearance to diagnose cancer?
a. Not all cancer cells look different from healthy cells.
b. Cancer cells are too small to examine using cell appearance.
c. Not all cancer cells are able to be biopsied from the body.
d. Cancer cells change appearance when taken out of the body.8. In the experiment, a solvent is added to each cell type (healthy cells and cancer cells).  After the sample tube containing each cell type is mixed on the vortex, the RNA is separated from the rest of the sample in a centrifuge.  Why does DNA settle to the bottom of the tube and RNA doesn’t?
a. RNA is much longer than DNA.
b. RNA is attached to proteins that help it stay in solution.
c. DNA is attached to biomolecules that weigh it down and help it settle to the bottom.
d. DNA is much longer than RNA.

9. What feature does mRNA have that tRNA and rRNA do not? mRNA always:
a. Contains a GABA box.
b. Contains a TATA sequence.
c. Ends with a G tail.
d. Ends with a poly-A tail.

10. How do the beads in the column separate mRNA from all other RNA?  The beads contain:
a. Sequences that magnetically separate the mRNA.
b. A glue-like substance derived from spider webs.
c. Poly-T’s.
d. A sequence of uracil’s that bind to the Poly-A tail.

11. After you isolate mRNA, you have to make a DNA copy.  Why can’t we just use mRNA?
a. DNA is much more stable than mRNA.
b. We have to add a fluorescent label that will allow us to see the sample.
c. mRNA will eventually transform into tRNA making it unusable.
d. A and B

12. Scientists call hybridization the key to microarrays.  Hybridization occurs when:
a. Two complimentary strands of DNA from different sources bind to each other.
b. Poly-A tails bind to Poly-Ts.
c. Different species interbreed and create new DNA base pairings.
d. Two strands of identical DNA bind without using the traditional nucleotide pairs.

13. When you scan the microarray in the scanner, the data show some dark spots.  What do these represent?
a. The DNA that has been replicated in healthy cells.
b. The mRNA that was washed away in the washing solution.
c. The DNA that was not transcribed and expressed in healthy cells.
d. The mRNA that was not bound by Oligo-d-tails in the beads.

14. When you scan the microarray in the scanner, some spots are yellow and represent places where the gene was expressed in both healthy and cancer cells.  These spots tell us:
a. Where to look for mutations.
b. Where DNA hybridized in cancer cells.
c. That DNA expression didn’t change in these genes when cancer occurred.
d. That the microarray didn’t work in these genes.

15. In our example, gene 6219 mRNA is made in both healthy and cancerous cells; however proteins are only translated from that mRNA in healthy cells.  Microarray analysis:
a. Shows us this defect by making yellow spots.
b. Cannot show us this defect, which is a limitation of this type of analysis.
c. Show us this defect by making red spots.
d. Cannot show us this defect, which is a benefit of this type of analysis.

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

DEMOGRAPHICS LAB WORKSHEET

Worksheet for Demographics Lab

Page 2 of 3

Lab 3: Demographics

Fill this sheet out and submit via the link given in Blackboard.

· Begin by going to the following website: https://www.learner.org/courses/envsci/interactives/demographics/

· Then click the link labeled Open Simulator.

· This will bring up a simulator, which is pre-loaded with demographic data from various countries.

Part 1. Age Structure Diagrams

1. Using the tool provided on the website, examine the 2015 population, the growth rate, and the age structure diagram for each of the following countries. Match the overall profile of the age structure diagram to one of the shapes given below.

Shape 1 Shape 2  Shape 3
Shape 4 Shape 5 Table of Age Structure Shapes to Match

 

2. Without changing any of the default settings for the country of interest, click the Step button 7 times, which advances the simulation to the year 2050. (Each click of the step button advanced the simulation 5 years).

Write down the predicted population for 2050, as well as age structure shape that most closely matches the simulation.

Enter all the data in the following data table:

Table 1.

Country 2015

Population

2015

Age Structure Shape

2015

Overall Growth Rate

2050 Population 2050

Age Structure Shape

2050

Overall Growth Rate

USA            
Brazil            
Nigeria            

 

Questions:

3. What clues from the shape of the age structure diagram tell you whether a population has positive or negative growth rates?

4. In our textbook, Figure 16.12 (p. 324) designates individuals in the ages of 0-14 as “pre-reproductive individuals”, and individuals between the ages of 15 and 44 as “reproductive individuals”. Explain how we can get some idea of whether a population is growing or shrinking by comparing the population levels of pre-reproductive individuals to reproductive individuals.

Part 2. Population Momentum

Call up the information for Nigeria (which is growing at a high rate). Enter the editing menu for the vital rates of birth by clicking on the pencil that is shown in the vital rates chart. When you get into the menu for editing the birth rates, look at the “Use rates from ______” feature. Use the pull down menu to select the values for the United States (which has a lower birth rate).

Simulate what would happen if Nigeria were to suddenly have the birth rates of the United States. Click the Step button 7 times, which advances the simulation to the year 2050.

Questions:

5. What happens to the population immediately after the birth rate is abruptly dropped in this simulation?

6. After the birth rate went down abruptly, in this simulation, at what point in the future did the simulation show that the population was leveling off or starting to decrease?

7. Why doesn’t the population level drop immediately when the birth rate is thus diminished?

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

College Level: Principle Of Biology I (Online)

Water, pH, and Buffers

Hands-on labs, inc. Version 42-0136-00-01

Lab Report

PHOTOS – Include two digital photos with your lab report, either as separate attachments to an e-mail or paste into your document.

1. Photo #1 – Take a photo of the celery after it has been sitting for at least 4 hours.

Get close enough to see the results

2. Photo #2 – Take a photo of the HORIZONTAL needle observation.

Be sure you are close enough to see the needle and how it is relative to the water.

3. Photo #3 – Take a photo of your test results –

the layout of the commercial and homemade pH papers side by side

after dipping into each well. –It matches table #5

(This is the paper towel with the 12 numbers on it, with the papers beside the well #.)

Exercise 1: Water and its Unique Properties

Part I

 

Data Table 1: Needle Observations

Vertical: Horizontal:
   

Part ii

 

Data Table 2: Paper Clips Needed to Break Surface Tension

Hypothesis: Result:
 

 

 

 

Paper clips

 

 

 

 

Paper clips

Experiment

Water, ph, and Buffers

96

©Hands-On Labs, Inc.

www.LabPaq.com

Part iii

 

Data Table 3: Drops of Water

Hypothesis: Result:
   

Questions for parts i, ii, iii

A. How did the experiment in Part I demonstrate surface tension? Use your experiment

observations when answering this question.

B. In Part I, when adding the needle to the water, which approach worked best to balance the

needle on the water—the vertical or horizontal placement? Explain your answer.

Part iV

Data Table 4: Part IV Observations

Observations:

Question for part IV

A. How did this activity demonstrate capillary action? Explain your answer using your experiment results and observations.

Exercise 3: Testing Common Household Materials

for pH Values

Observations

 

Data Table 5: pH Observations

 

Well

 

Plate

 

 

item tested

Commercial

 

pH strip

Homemade

 

pH strip

    Color pH Color pH
 

1

HCl

(hydrochloric acid)

       
 

2

NaOH

(sodium hydroxide)

       
 

3

 

Distilled water

       
 

4

Lemon juice        
 

5

Orange juice        
 

6

Coca cola        
 

7

       
 

8

         
 

9

         
 

10

         
 

11

         
 

12

         

 

 

Data Table 6: Analysis of Results

 

Well plate

 

item tested

Acid/B ase/ Neutral?  

Explanation:

 

 

1

 

HCl (hydrochloric acid)

   
 

 

2

NaOH (sodium hydroxide)    
 

 

3

 

 

Distilled water

   
       
       
       
       
       
       
       
       
       

 

Questions:

A. Compare and contrast the results between the commercial and homemade pH test strips. Which test strips were more accurate? Explain your answer.

B. Why is the pH scale important in science? Give several examples of scientific applications.

C. What information about a chemical can be inferred from knowing its pH value?

D. If a chemical has a pH of 3, how could you change its pH value to be more basic?

Exercise 4: Buffers in a Living System

Observations

 

 

Data Table 7: pH Change of Buffered and Unbuffered Solutions

  Unbuffered solution Buffered solution
Initial pH    
+ 3 drops HCl    
+ 6 drops HCl    
+ 9 drops HCl    
+ 12 drops

HCl

   
+15 drops HCl    
+18 drops HCl    

 

Questions:

A. Analyze the results of your experiment. Did the buffer resist changes in the pH? Explain your

answer using your experiment results.

Experiment

Water, ph, and Buffers96©Hands-On Labs,Inc.www.LabPaq.com

Water, pH, and Buffers

Hands On labs, Inc., Version 42-0136-00-01

Lab Report

PHOTOS

–Include two digital photos with your lab report, either as separate attachments to an e-mail

or paste into your document.

1.

Photo #1

–Take a photo of the

celery after it has been sitting for at least 4 hours.

Get close enough to see the results

2.Photo #2–Take a photo of the HORIZONTAL needle observation.

Be sure you are close enough to see

the needle and how it is relative to the water.

3.Photo #

3–Take a photo of your test results

–the layout of the commercial and homemade pH papers side by side

after dipping into each well.

–It matches table #5

(This is the paper towel with the 12 numbers on it, with the papers beside the well #.)

Exercise 1: Water and its Unique Properties

Part I

Data Table 1: Needle Observations

Vertical:

Horizontal:

Part ii Data Table 2: Paper Clips Needed to Break Surface

Tension

Hypothesis:

Result:

Paper clips

Paper clips

Experiment

Water, ph, and Buffers96 ©Hands-On Labs, Inc., www.LabPaq.com

Water, pH, and Buffers

Hands-on labs, inc. Version 42-0136-00-01

Lab Report

PHOTOS – Include two digital photos with your lab report, either as separate attachments to an e-

mail or paste into your document.

1. Photo #1 – Take a photo of the celery after it has been sitting for at least 4 hours.

Get close enough to see the results

2. Photo #2 – Take a photo of the HORIZONTAL needle observation.

Be sure you are close enough to see the needle and how it is relative to the water.

3. Photo #3 – Take a photo of your test results –

the layout of the commercial and homemade pH papers side by side

after dipping into each well. –It matches table #5

(This is the paper towel with the 12 numbers on it, with the papers beside the well #.)

Exercise 1: Water and its Unique Properties

Part I

Data Table 1: Needle Observations

Vertical: Horizontal:

Part ii

Data Table 2: Paper Clips Needed to Break Surface Tension

Hypothesis: Result:

Paper clips

Paper clips

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Biology 2 – Hierarchies Of Life Lab Questions

Hierarchies of Life

Experiment 1: Classification of Common Objects

Data Tables (15 points)

Post-Lab Questions

1. Did you find that the items grouped together as you worked down the flow chart had similar characteristics in terms of their appearance? What about function? (10 points)

A lot of the groups had similar characteristics and function, until I looked deeper into then as I continued down the list of questions. For example, a candle and a Scentsy are similar in function and characteristics, as they both give off pleasant smells. But if you were to ask if they use fire, you’d be able to differentiate the two.

2. Do you feel that the questions asked were appropriate? What questions would you have asked to devise this classification flow chart? What objects would be grouped together with your system? (10 points)

I had to look over the chart a few times and soon made sense of the flow. I found myself conflicted on some of the answers as well, not agreeing with some entirely. For example, I don’t think a hex nut is cylindrical or round. It has sides, similar to pens and pencils where the style if hex like.

3. Do you think it is more or less challenging to classify living organisms in comparison to objects? Why? (10 points)

 

4. Pick 10 household items (e.g. spoon, book, paper clip, etc.) and design a taxonomic classification system to categorize them, similar to the one in Figure 8. Make sure you ask enough yes/no questions so that each item ends up in its own box or category at the end. (10 points)

Experiment 2: Classification of Organisms

Data Tables (10 points)

Table 2: Classification of Organisms

Organism Domain Kingdom Defined Nucleus Mobile Photosynthesis Unicellular
Salmonella Bacteria Genus No Yes Yes Yes
Ants Eukarya Animalia

Yes Yes No No
Zoo Flagellate Eukarya Protozoa Yes Yes No Yes
Wolf Eukarya Animalia Yes Yes No No
Morning Glory Eukarya Plantae Yes No Yes No
Euglena Eukarya Protozoa Yes Yes Yes Yes
Shiitake Eukarya Fungi Yes No No No
Pseudomonas Bacteria Bacteria No Yes No Yes
Spruce Eukarya Planta Yes No Yes No
Death Cap Mushroom Eukarya Fungi Yes No No No

Post-Lab Questions

1. Did this series of questions correctly organize each organism? Why or why not? (10 points)

2. Do you feel that the questions asked were appropriate? What questions would you have asked? (10 points)

3. Which kingdom do you believe is most challenging to categorize correctly? Explain your answer (10 points)

©eScience Labs, LLC 2018

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Lab 5: Weather And Climate Change

Lab 5 Weather and Climate Change

54

Weather and Climate Change

Introduction

The Earth’s atmosphere is composed of 21% oxygen (O2), 78% Nitrogen (N2), and ~1% other gases

(including water vapor, argon, carbon dioxide, hydrogen, and helium). Oxygen is essential for life and is used

by most organisms for cellular respiration while carbon dioxide is used by plants and certain bacteria for pho-

tosynthesis.

Our atmosphere is composed of five layers:

1. Troposphere – nearest to the Earth’s surface; layer in which weather occurs (rising and falling air);

comprises one half of total atmosphere; air pressure is decreased to 10% of that at sea level.

Concepts to Explore

 Atmosphere

 Weather

 The Water Cycle

 Climate

Figure 1: Clouds are visible accumulation of water droplets that accumulate in the Earth’s lowest

layer of the atmosphere, the troposphere.

55

Weather and Climate Change 2. Stratosphere – contains the ozone layer (important for UV ray absorption).

3. Mesosphere – layer which meteors burn up in upon entering the Earth’s atmosphere.

4. Ionosphere/Thermosphere – locations of auroras (e.g., aurora borealis); layer in which the space shut-

tle orbits.

5. Exosphere – upper limit of the Earth’s atmosphere; layer where Earth’s atmosphere merges with outer

space.

Weather is the state of the atmosphere at a given time and place and includes temperature, pressure, the

type and amount of precipitation, wind, clouds, etc. Weather conditions can change hour to hour, day to day,

and season to season. Our weather is caused by uneven heating of the Earth from the sun. The resulting

temperature differentials generate wind that forces warm air to flow to regions of cooler air. This flow can oc-

cur both horizontally across the surface of the Earth (e.g., from tropical to polar regions) and vertically, caus-

ing clouds, rain, and storms to develop as warm, moist air cools and condenses as it rises. In addition to driv-

ing our weather, the sun’s energy also is responsible for regulating how water moves on, above, and below

the Earth’s surface through the water cycle.

The water cycle describes how the amount of water on Earth remains constant over time. Water exists in

three different states (in solid form as ice, as liquid water, and in a gas as water vapor) and cycles continu-

ously through these states. The temperature and pressure determine what state water is in. The water cycle

consists of the following processes:

 Evaporation of liquid water to a gas (water vapor)

Figure 2: The water cycle – can you name the steps? Refer to Lab 2 for help!

56

Weather and Climate Change

 Condensation of water vapor to liquid water

 Sublimation of solid water (ice) to water vapor (think dry ice)

 Precipitation occurs when water vapor condenses to clouds/rain

 Transpiration occurs when liquid water moves through plants from roots to leaves, changes to water

vapor and is released to the atmosphere through holes (stoma) in the leaves

 Surface run-off occurs when water moves from high to low ground

 Infiltration occurs when water fills porous spaces in the soil

 Percolation occurs when ground water moves in a saturated zone below Earth’s surface

 

Clouds form at many different altitudes in the troposphere when water vapor in warm air rises and cools. The

water vapor condenses on microscopic dust particles in the atmosphere and transforms into either a liquid or

solid and is visible as clouds. Warm air can hold more water vapor than cool air. Thus, clouds often form over

the tops of mountains and over large bodies of water, since the air over these formations is typically cooler

than the surrounding air.

Figure 3: Clouds.

57

Weather and Climate Change

Climate is defined as the long-term average pattern of weather in a given region. Our climate is influenced by

five components: the atmosphere, the hydrosphere (mass of liquid water), the cryosphere (mass of solid wa-

ter; ice), the land surface, and the biosphere (life on Earth). Climate change refers to the observed accelerat-

ed increase in the Earth’s temperature over the past 100 years and its predicted continued increase. The

Earth’s average temperature has increased approximately 1 – 1.5 degrees F since 1900 (see figure below)

and is projected to rise an additional approximately 3 – 10 degrees F over the next 100 years.

Changes in the Earth’s atmosphere have contributed to global warming. Global warming is due to the accu-

mulation of “greenhouse gases”: carbon dioxide (CO2) from burning fossil fuels (oil, gas, and coal); methane

(CH4) from agriculture, landfills, mining operations and gas pipelines; chlorofluorocarbons (CFCs) from refrig-

erants and aerosols; and nitrous oxide from fertilizers and other chemicals. Increased temperature results in

increased evaporation, accelerated polar ice melting, increased number of extreme temperature days, heavi-

er rains/floods, and more intense storms. These changes will have important implications across public

health, infrastructure, energy, economic, and political arenas.

Figure 4: Global Temperature Anomalies. Source: www.nasa.gov

58

Weather and Climate Change

Demonstration 1: Modeling the Water Cycle

In this experiment you will observe how entrapped water moves from land to the atmosphere and determine

how weather conditions affect this movement.

Procedure

1. Using a graduated cylinder, carefully pour 20 mL of warm water (60°C) into the canning jar and secure

the lid.

2. Fill the petri dish with ice and place on top of the canning jar’s lid.

3. Observe the jar every 5 minutes for 30 minutes. After 30 minutes, remove the petri dish and carefully re-

move the lid and look at the underside.

Materials

100 mL Graduated cylinder

Canning jar

Petri dish

Thermometer

*Hot water

*Water

*Ice cubes

*You must provide

59

Weather and Climate Change Experiment 1: Assessing Infiltration

In this experiment, you will observe how entrapped water moves from land to the atmosphere and determine

how weather conditions affect this movement.

Procedure:

1. Record your hypothesis in post-lab question 1. Be sure to indicate how you expect the environment within

the bag to change over the course of the experiment.

2. Measure 200 mL sand into each plastic re-sealable bag.

3. Measure 200 mL room temperature water into each bag.

4. Seal each bag, leaving a bit of air in each.

5. Place 1 bag in a sunny location and 1 bag in a shady location.

6. Observe the bags after 1 hour, then again after 12 hours. Record your observations in Table 1.

Materials

(2) 9 x 12 in. Bags

250 mL Beaker

400 mL Sand

*Water

*A sunny location (window sill, outside porch, etc.)

*A shady location

*You must provide

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Lab 3

Lab 3-

Your Name:

INSTRUCTIONS:

· On your own and without assistance, complete this Lab 3 Answer Sheet electronically and submit it via the Assignments Folder by the date listed in the Course Schedule (under Syllabus).

· To conduct your laboratory exercises, use the Laboratory Manual located under Course Content. Read the introduction and the directions for each exercise/experiment carefully before completing the exercises/experiments and answering the questions.

· Save your Lab 3 Answer Sheet in the following format: LastName_Lab3 (e.g., Smith_Lab3).

· You should submit your document as a Word (.doc or .docx) or Rich Text Format (.rtf) file for best compatibility.

Pre-Lab Questions

1. What is the water potential of an open beaker containing pure water?

1. Why don’t red blood cells swell or shrink in blood?

1. How do osmotic power plants work?

1. Research the structures that protect plant and animal cells from damage resulting from osmotic pressure. Write a few paragraphs explaining what they are, how they work, and where they are located.

Experiment 1: Osmosis Direction and Concentration Gradients

Data Tables

Table 5: Sucrose Concentration vs. Tubing Permeability

Band Color Sucrose % in Beaker Sucrose % in Bag Initial Volume (mL) Final Volume (mL) Net Displacement (mL)
Yellow          
Red          
Blue          
Green          

 

Post-Lab Questions

Hypotheses (write one hypothesis for each bag):

Yellow bag:

Red bag:

Blue bag:

Green bag:

1. Insert a picture of your results here:

2. Do your results support your hypotheses? Did the volume in each bag change as predicted based on the known tonicity of each bag? Explain.

3. If the results were unexpected, discuss the possible reason(s) your results deviated from your hypothesis.

4. Using the known sucrose concentrations inside each of the tubing pieces and their respective beakers, identify whether the solution inside the tube was hypotonic, hypertonic, or isotonic in comparison to the beaker solution it was placed in.

Yellow:

Red:

Blue:

Green:

5. Which tubing increased the most in volume? Why?

6. What would happen if the tubing with the yellow band was placed in a beaker of distilled water?

7. How are excess salts that accumulate in cells transferred to the blood stream so they can be removed from the body? Explain how this process works in terms of tonicity.

8. How is this experiment similar to the way a cell membrane works in the body? How is it different? Be specific with your response.

9. If you wanted water to flow out of a piece of dialysis tubing filled with a 50% sucrose solution, what would the minimum concentration of the beaker solution need to be? Explain your answer using scientific evidence.

Experiment 2: What Household Substances are Acidic or Basic?

Data Tables

Table 6: pH Values of Common Household Substances

Substances pH Prediction pH Test Strip Color
Acetic Acid (Vinegar)    
Sodium Bicarbonate Solution (Baking Soda)    
     
     
     
     

 

Post-Lab Questions

1. Insert a picture of your results here:

1. What is the purpose of determining the pH of the acetic acid and the sodium bicarbonate solution before testing the other household substances?

1. Compare and contrast acids and bases in terms of their H+ ion and OH- ion concentrations.

1. Name two acids and two bases you often use.

® eScience Labs, 2018

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Biology

The Arsenic Life Debate  

For this forum we will examine a case study about the discovery of a bacterium capable of substituting arsenic for phosphorus in its DNA. The paper was controversial and subject to debate on very public forums such as twitter and blog posts. In this forum we will discuss the findings of the paper and examine the scientific review process.

Read through the attached case study and answer the questions posed within the document. Using your answers from the document, answer any 4 of the questions below. Write your post in a narrative format based on your answers. Original posts are due by midnight EST on Wednesday. Replies are due by midnight EST on Sunday of week 2. Answer to student questions are due by midnight on Sunday of week 3.

1) Did the reporter Alexis C Madrigal break his agreement with the journal Science by releasing his statement on Twitter? If you were responsible for Science’s public relations division would you revoke his access to future Sciencearticles ahead of the embargo? Why or why not?

2)What would Felisa need in order to convince other researchers that a life form uses arsenic in its cells and does not merely survive in the presence of (or tolerate high levels of) arsenic?

3) Given that Rosie used slightly different techniques to replicate Felisa’s work, does this refute the original arsenic life results?

4) How do you expect other researchers to react to Felisa’s work? Is she likely to suffer a professional penalty? Why or why not?

5) What is peer review in science? What are some of the strengths and imperfections of the peer review system in science?

6) Once published, should science be debated in the public realm or should science be debated in a”closed discussion forum” among scientists until a consensus can be delivered to the public? Why?

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Journal

Virtual Lab: Sex-Linked Traits

Worksheet

Please make sure you have read through all of the information in the “Questions” and “Information” areas. If you come upon terms that are unfamiliar to you, please refer to your textbook for further explanation or search the word here: http://encarta.msn.com/encnet/features/dictionary/dictionaryhome.aspx

Next, complete the Punnett square activity by clicking on the laboratory notebook. Please be sure to note the possible genotypes of the various flies:

Female, red eyes Female, red eyes Female, white eyes Male, red eyes Male, white eyes
XRXR XrXR XrXr XRY XrY

When you have completed the Punnett square activity, return to the laboratory scene to begin the actual laboratory activity.

In this exercise, you will perform a Drosophila mating in order to observe sex-linked trait transmission. Please click on the shelf in the laboratory. Here you will find vials of fruit flies. On the TOP shelf, please click on one of the female vials (on the left side) and then drag it to the empty vial on the shelf below. Please repeat this step using one of the male vials (on the right side). These flies will be used as the parental (P) generation. You may switch your parent choices at any time by dragging out old selections and dragging in new flies. Use the Punnett square below to predict the genotypes/phenotypes of the offspring (Note: refer to the genotype table you created above if needed):

  XR XR
XR Genotype: XRXR

Phenotype:Red eye, female

Genotype:XRXR

Phenotype: Red eye, female

Y Genotype:XRY

Phenotype: Red eye, male

Genotype:XRY

Phenotype: Red eye, male

__50_% Female, red eye _0__% Female, white eye _50__% Male, red eye _0__% Male, white eye

When you are finished, click “Mate and Sort”.

You will now see information appear in the vials sitting on the next shelf below. These are the offspring of the parent flies you selected above, and they represent the first filial (F1) generation. In your “Data Table” on the bottom of the page and/or on Table I found at the end of this Worksheet, please input the numbers of each sex and phenotype combination for the F1 generation. These numbers will be placed into the first row marked “P generation Cross”.

You will next need to select one of the F1 female flies and one of the F1 male flies to create the second filial (F2) generation. Drag your selections down to the empty vial on the next shelf below and fill in the Punnett square below to predict the offspring:

 

  XR XR
XR Genotype: XRXR

Phenotype:Red eye, female

Genotype:XRXR

Phenotype: Red eye, female

Y Genotype:XRY

Phenotype: Red eye, male

Genotype:XRY

Phenotype: Red eye, male

__50_% Female, red eye _0__% Female, white eye _50__% Male, red eye _0__% Male, white eye

After clicking “Mate and Sort”, you will now have information on their offspring (the F2 generation) to input into your “Data Table” or Worksheet below. This information will be placed into the second row marked “F1 generation Cross”.

NOTE: there are additional lines remaining to use if your instructor requires the analysis of additional crosses.

Please finish this exercise by opening the “Journal” link at the bottom of the page and answering the questions.

Table I:

Cross Type Phenotype of Male Parent Phenotype of Female Parent Number of Red eye, Male Offspring Number of White eye, Male Offspring Number of Red eye, Female Offspring Number of White eye, Female Offspring
P Generation Cross Red Red 50 0 50 0
F1 Generation Cross Red Red 50 0 50 0
P Generation Cross White Red 47 0 53 0
F1 Generation Cross Red Red 22 25 53 0
P Generation Cross Red White 0 49 51 0
F1 Generation Cross White Red 27 28 20 25
P Generation Cross White White 0 51 0 49
F1 Generation Cross White White 0 51 0 49

 

Post-laboratory Questions:

Through fruit fly studies, geneticists have discovered a segment of DNA called the homeobox which appears to control:

Sex development in the flies

Life span in the flies

Final body plan development in the flies

The genotype of a red-eyed male fruit fly would be:

XRXR

XRXr

XrXr

A or B

None of the above

Sex-linked traits:

Can be carried on the Y chromosome

Affect males and females equally

Can be carried on chromosome 20

A and B

None of the above -2

A monohybrid cross analyzes:

One trait, such as eye color

Two traits, such as eye color and wing shape

The offspring of one parent

A female with the genotype “XRXr”:

Is homozygous for the eye color gene

Is heterozygous for the eye color gene

Is considered a carrier for the eye color gene

A and B

B and C

In T.H. Morgan’s experiments:

He concluded that the gene for fruit fly eye color is carried on the X chromosome

He found that his F1 generation results always mirrored those predicted by Mendelian Laws of Inheritance

He found that his F2 generation results always mirrored those predicted by Mendelian Laws of Inheritance

A and B

All of the above

In this laboratory exercise:

The Punnett square will allow you to predict the traits of the offspring created in your crosses

XR will represent the recessive allele for eye color, which is white

Xr will represent the dominant allele for eye color, which is red

All of the above

In a cross between a homozygous red-eyed female fruit fly and a white-eyed male, what percentage of the female offspring is expected to be carriers?

0%

25%

50%

75%

100%

In a cross between a white-eyed female and a red-eyed male:

All males will have red eyes

50% of males will have white eyes

All females will have red eyes

50% of females will have white eyes

In human diseases that are X-linked dominant, one dominant allele causes the disease. If an affected father has a child with an unaffected mother:

All males are unaffected

Some but not all males are affected

All females are unaffected

Some but not all females are affected

Journal Questions:

1. In a mating between a red-eyed male fruit fly and a red-eyed heterozygous female, what percentage of the female offspring is expected to be carriers? How did you determine the percentage?

2. In a mating between a red-eyed male fruit fly and a white-eyed female fruit fly, what percentage of the male offspring will have white eyes? Describe how you determined the percentage.

3. Hemophilia, a blood disorder in humans, results from a sex-linked recessive allele. Suppose that a daughter of a mother without the allele and a father with the allele marries a man with hemophilia. What is the probability that the daughter’s children will develop the disease? Describe how you determined the probability.

4. Colorblindness results from a sex-linked recessive allele. Determine the genotypes of the offspring that result from a cross between a color-blind male and a homozygous female who has normal vision. Describe how you determined the genotypes of the offspring.

5. Explain why sex-linked traits appear more often in males than in females.

6. In humans, hemophilia is a sex-linked recessive trait. It is located on the X chromosome. Remember that the human female genotype is XX and the male genotype is XY. Suppose that a daughter of a mother without the allele and a father with the allele marries a man with hemophilia. What is the probability that the daughter’s children will develop the disease? Describe how you determined the probability.

7. Colorblindness also results from a sex-linked recessive allele on the X chromosome in humans. Determine the genotypes of the offspring that result from a cross between a color-blind male and a homozygous female who has normal vision. Describe how you determined the genotypes of the offspring.

8. Based on the traits explained in questions 6 and 7, explain why sex-linked traits in humans appear more often in males than in females.

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Population Ecology

Population Ecology Hands-On Labs, Inc. Version 42-0281-00-02 Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time to organize the materials you will need and set aside a safe work space in which to complete the exercise. Experiment Summary: You will explore the field of population ecology and survey factors involved in the decline, expansion, and maintenance of a population. Simulated growth of a population will be modeled, graphed, and analyzed. You will use quantitative data from a cemetery population to study demographics. www.HOLscience.com 1 © Hands-On Labs, Inc. EXPERIMENT Learning Objectives Upon completion of this laboratory, you will be able to: ● Define species, population, and metapopulation. ● Differentiate between density-dependent and density-independent factors and describe how each can influence population size. ● Outline factors that influence carrying capacity and describe the potential consequences of overpopulation. ● Illustrate graphs of linear and exponential population growth. ● Describe how demography data may be used to calculate probability of mortality. ● Model population growth and determine if the growth was linear, exponential, or had no observable pattern. ● Determine constraints placed on a modeled population and draw conclusions about carrying capacity. ● Use birth and mortality data of a cemetery to investigate demography. ● Determine probability of death within a cohort. Time Allocation: 3.5 hours Note: This experiment suggests a field trip to a local cemetery for data collection. Please plan your time accordingly. www.HOLscience.com 2 ©Hands-On Labs, Inc. Experiment Population Ecology Materials Student Supplied Materials Quantity Item Description 3 Sheets of paper (optional) 1 Pen or pencil 1 Access to a cemetery (optional) 1 Access to a printer (optional) HOL Supplied Materials Quantity Item Description 1 Packs of dice, mini (100 pcs) 1 Cup, plastic, 9 oz., short 1 HOL Supplied Cemetery Data Supplemental Document Note: To fully and accurately complete all lab exercises, you will need access to: 1. A computer to upload digital camera images. 2. Basic photo editing software such as Microsoft Word® or PowerPoint®, to add labels, leader lines, or text to digital photos. 3. Subject-specific textbook or appropriate reference resources from lecture content or other suggested resources. Note: The packaging and/or materials in this LabPaq kit may differ slightly from that which is listed above. For an exact listing of materials, refer to the Contents List included in your LabPaq kit. www.HOLscience.com 3 ©Hands-On Labs, Inc. Experiment Population Ecology Background Species and Populations A species is a group of organisms that share many common characteristics and breed among themselves to produce fertile offspring. Individuals of a species that occupy a defined area at the same time are called a population. The habitat area of a population is often naturally enclosed within geographical boundaries, such as rivers or mountains. See Figure 1. In research studies about populations, scientists often define artificial boundaries. For example, scientists may investigate the population within a county or state boundary. Figure 1. Small population of water lilies (family Nymphaeaceae) inhabiting a pond. © yuriy kulik When suitable habitat is patchy or fragmented, populations can be spatially isolated, but members of the population can have some level of interaction with one another. When this occurs, the interacting populations are referred to as a metapopulation. An example of a species that is often found as a metapopulation is the desert bighorn sheep (Ovis canadensis). See Figure 2. The bighorn sheep occupies steep slopes of mountains that are separated by flat lowlands. Although the lowlands are an unsuitable long-term habitat for the sheep, individuals and groups of sheep are able to travel through the lowlands to adjacent mountains, resulting in interaction among individuals of different but connected populations. www.HOLscience.com 4 ©Hands-On Labs, Inc. Experiment Population Ecology Figure 2. Bighorn sheep. © Shane W. Thompson Population Density Biologists who study population ecology often investigate population size and factors involved in the decline, expansion, and maintenance of a population. Data about populations include the following: ● Mortality (death) and birth rates ● Movement of members into and out of the population (immigration and emigration) ● Number of individuals in a group, or cohort (for this experiment cohorts are the age classes of deceased individuals) ● Spatial distribution of species ● Population density (the number of individuals per unit area) Factors related to the density of a population, called density-dependent factors, affect population growth by reducing or increasing the population size. For example, the ability to acquire a mate is a density-dependent factor. When population density is great, competition for mates increases. Members of the population may spend more energy competing for mates than actually mating, and the population size can subsequently decrease due to reduced births. On the other hand, when population density is optimal, competition may be relatively low and mating opportunities may be high, resulting in growth of the population. Other density-dependent factors include resource availability, predation rates, and disease transmission. Density-independent factors influence population growth but are not dependent on population density. Consider how the population density of trees may be affected by weather patterns and wildfires. Growth rates can follow various patterns, as shown in Figure 3. When resources are unlimited, a population’s growth rate can be exponential. Although the graph of exponential growth illustrates a potentially great increase in population size, no population can grow indefinitely. In nature, members of the population will eventually consume available resources, and the population size will ultimately plateau or decline due to density-dependent factors. www.HOLscience.com 5 ©Hands-On Labs, Inc. Experiment Population Ecology Figure 3. Population growth patterns. A. Linear. B. Exponential. Every natural area has a carrying capacity, a decided number of individuals that can be supported given the area’s limited resources. Carrying capacity is influenced not only by the number of members of a single population, but also members of competing populations. Furthermore, a given population may act as a resource for another population; for example, voles are a food resource for owls. Carrying capacities are in constant flux, as they are affected by both densitydependent and density-independent factors. In the event that overpopulation occurs and the carrying capacity is exceeded, a population collapse can occur; whereby the population size decreases dramatically. When a population completely collapses and no members remain, the population is locally extinct, or extirpated. Human Populations A subset of population ecology, demography, is the study of human populations. Cemeteries are an excellent place to study demography as they provide data on both the birth and death dates of individuals of a local population. This information can be used in turn to determine the probability of death and survival at different ages in a population. Table 1 is an example analysis of mortality. To generate the table, the number of individuals that died in each cohort (based on age class) must be determined. For example, the first cohort listed in Table 1 includes individuals that died from age one to nine. From this information, probability of mortality can be calculated. According to Table 1 there is a 15% probability of death in this specific population, between ages one and nine. Closely study the table descriptions provided below. www.HOLscience.com 6 ©Hands-On Labs, Inc. Experiment Population Ecology Table 1. Cemetery Demography Data. Cohort (X) Number of deaths (D) Frequency of population in cohort (d) Frequency of survivorship entering the cohort (l) Probability of death within a cohort (Q) 1-9 24 0.15 1.00 0.15 10-19 20 0.13 0.85 0.15 20-29 5 0.03 0.73 0.04 30-39 10 0.06 0.69 0.09 40-49 16 0.10 0.63 0.16 50-59 40 0.25 0.53 0.47 60-69 35 0.22 0.28 0.78 70+ 10 0.06 0.06 1.00 Table Description: ● Cohort (X) – The age intervals of deceased individuals ● Number of deaths (D) – The number of individuals that died in each cohort ● Frequency of population in cohort (d) – The portion of the population that died in each cohort, d = D / Total Population Size ● Frequency of survivorship entering the cohort (l) – The portion of the population that enters the cohort, l cohort2 = lcohort1 – dcohort1 ● Probability of death within a cohort (Q) – The probability that any given individual will die within a cohort, Q = d / l www.HOLscience.com 7 ©Hands-On Labs, Inc. Experiment Population Ecology Exercise 1: Modeling Population Growth In this exercise, you will use dice to model population growth. Each die will represent an individual; new individuals will be born, and individuals will also die. You will track the entire population until the population density (number of individuals) reaches 100. 1. Before you begin to model population growth, examine the rules listed below and shown in Figure 4. Rules ● Each die represents 1 individual of the population. ● You will start with 4 individuals. ● You will roll the dice to investigate births and deaths of the population. ● The number of dots on each die will represent a birth, a death, or neither birth nor death. ● Birth = 1, 4 ● Death = 6 ● Neither = 2, 3, 5 Figure 4. Rules of population growth activity. 2. Select 4 dice and place them in the cup. These dice represent the 4 individuals comprising generation 1, the initial population. Note: The color of the dice does not matter. 3. In Data Table 1 of your Lab Report Assistant, record the “Initial population size (N)” (for the first generation, the initial population size is 4). www.HOLscience.com 8 ©Hands-On Labs, Inc. Experiment Population Ecology 4. Cover the cup with your hand and shake the dice. Gently pour the dice onto a table or work surface. Important Note: Pouring the dice out too quickly or too high from the work surface may result in lost dice. Take care not to inadvertently lose individuals. 5. Determine the number of individuals that were born (any dice displaying numbers 1 and 4). Determine the number of individuals that died (any dice displaying number 6). See Figure 5. Figure 5. Example first generation: 2 individuals gave birth, and 1 individual died. 6. Record the “Number of births (B)” and the “Number of deaths (D)” in Data Table 1. 7. Remove any dead individuals. For example, in Figure 5 above, the dead individual should be removed from the population and returned to the bag. 8. Add a die for each birth. For example, in Figure 5 above, 2 dice should be added to the population. 9. Calculate the final population size and record the value in Data Table 1. Use the following equation: Final population size = N + B – D 10. Count the number of dice in your population to ensure that it equals the value recorded for “final population size” and return the dice to the cup. 11. To obtain data for generation 2, repeat steps 3-10. Note: Because you will be starting with a very small population, extinction is a possibility, but the odds are against it. If your population does go extinct, start again. 12. Continue rolling the dice and recording data until your population size reaches a minimum of 100. www.HOLscience.com 9 ©Hands-On Labs, Inc. Experiment Population Ecology 13. Once you have reached a population size of 100, calculate the change in population size for each generation. Record each value in Data Table 1. Use the following equation: Change in population size = Final population size – Initial population size 14. Graph the initial population size for each generation. To do this, create a scatter plot with the generations on the independent axis (x-axis) and the initial population size on the dependent axis (y-axis). Consider whether the population growth you modeled showed a linear pattern, exponential pattern, or no pattern. 15. Resize the graph and insert it into Data Table 2 of your Lab Report Assistant. Refer to the appendix entitled, “Resizing an Image” for guidance with resizing an image. 16. Graph the change in population size for each generation. To do this, create a bar graph with the generations on the independent axis (x-axis) and the change in population size on the dependent axis (y-axis). Consider whether changes in population size were greatest when the population was smaller or larger. 17. Resize the graph and insert it into Data Table 3 of your Lab Report Assistant. Questions A. How many generations did it take to reach a population size of 100? B. Consider the mode of reproduction modeled in your population. Would sexual reproduction or asexual reproduction likely be the cause of a birth? Are individuals of the species likely or unlikely to have separate male and female sexes? C. Did the modeled population exhibit linear growth, exponential growth, or no pattern? Use Data Table 2 to support your answer. D. Were changes in population size greatest when the population was smaller or larger? Which generation exhibited the greatest change in size? Use Data Table 3 to support your answer. E. What resource constraints were placed on the modeled population? F. Could the modeled population exhibit indefinite growth? If so, how? Is indefinite growth observed in nature? Explain why or why not. www.HOLscience.com 10 ©Hands-On Labs, Inc. Experiment Population Ecology Exercise 2: Investigating a Human Population In this exercise, you will investigate demography of a human population. You will collect birth and death information from a cemetery and analyze trends in the population. 1. Research your local area to find a cemetery that you may visit for this exercise. Note: If you are unable to access a cemetery, you may use the data provided in the “HOL Supplied Cemetery Data” Supplemental Document. If you choose to do this, skip to step 8. 2. Print a copy of Data Table 4 from your Lab Report Assistant, to bring with you to the cemetery. Travel to a cemetery during the day, ensure that conditions are safe and public access is permitted. 3. In Data Table 4, record the name, birth date and date of death for 80 deceased individuals. As you collect data, be sure to spread out within the full sampling area. Individuals of the same family or who died in shared years will often be grouped together, and the goal is to take a representative sample of all individuals in the population. 4. Record the cemetery name and location in Data Table 4. 5. Determine how old each person was when they died, and record your data in Data Table 4. Use the following equation: Age at death = Birth year – Death year 6. Investigate the first names of each individual and record the sex (M for male; F for female) in Data Table 4. If the name is gender-neutral, such as Jean, Lynn, or Pat, you may leave the area blank. Ensure that any data you recorded by hand is present in the Lab Report Assistant document that you report to your instructor. Note: This concludes the outdoor portion of this exercise; the rest of Exercise 2 may be performed from home. 7. Record a summary of the population. Address each of the following questions, and record data in Data Table 5 of your Lab Report Assistant. ● What were the first and last birth years? ● What were the first and last death years? ● How many individuals died before 1950? How many died after 1950? ● How many individuals are male and female? www.HOLscience.com 11 ©Hands-On Labs, Inc. Experiment Population Ecology 8. In the next steps, you will calculate the probability of dying within a given cohort. As shown in Data Table 6 of your Lab Report Assistant, cohorts are age classes. For example, cohort 1 includes individuals that died between the ages of 1 and 9; cohort 2 includes individuals who died between the ages of 10 and 19. Examine Data Table 6 and study the following descriptions for each column heading: ● Cohort (X) – The age intervals of deceased individuals. ● Number of Deaths (D) – The number of individuals that died in each cohort. ● Frequency of Population in Cohort (d) – The portion of the population that died in each cohort. ● Frequency of Survivorship Entering the Cohort (l) – The portion of the population that enters the cohort. ● Probability of Death within a Cohort (Q ) – The probability that any given individual will die within a cohort. 9. Count the number of people who died in each cohort (age interval). Record your data under “Number of deaths (D)” in Data Table 6. 10. Calculate the “Frequency of population in cohort (d).” Record each value as a number with two decimal places. Use the following equation: d = D / Total Population Size Note: “Frequency of survivorship of cohort (l)” is based on entry into the cohort. Thus, the first cohort listed will always have a value of 1.00 because 100% of the population was born, entering into the cohort. A value of 1.00 has been entered for cohort # 1 in Data Table 6. With each subsequent cohort, values of “l” will decrease. 11. Calculate the “Frequency of survivorship of cohort (l)” for cohort # 2. Record each value as a number with 2 decimal places. Use the following equation: I cohort2 = Icohort1 – dcohort1 12. Calculate the “Frequency of survivorship of cohort (l)” for each of the remaining cohorts. For example, “Frequency of survivorship of cohort (l)” for cohort 3 will be calculated as: I cohort3 = Icohort2 – dcohort2 Note: The final recorded “l” in Data Table 6 should be equivalent or very close to the final recorded “d.” 13. Calculate the “Probability of death (Q).” Record each value as a number with 2 decimal places. Use the following equation: Q = d / l www.HOLscience.com 12 ©Hands-On Labs, Inc. Experiment Population Ecology Note: The probability of death is a frequency and may be interpreted as a percentage. For example, if Q=0.30 for cohort # 1, then there is a 30% probability that a given individual will die between the ages of 1 to 9. Note: To find Q, use data within a single cohort: Qcohort1 = dcohort1 / lcohort1 14. Create a bar graph of the probability of death within each cohort. Plot the cohort age interval (1-9, 10-19, etc.) on the independent axis (x-axis), and plot the probability of death on the dependent axis (y-axis). 15. Resize the graph and insert it into Data Table 7 of your Lab Report Assistant. 16. When you are finished uploading photos and data into your Lab Report Assistant, save your file correctly and zip the file so you can send it to your instructor as a smaller file. Refer to the appendix entitled “Saving Correctly” and the appendix entitled “Zipping Files” for guidance with saving the Lab Report Assistant correctly and zipping the file. Questions A. Which cohort had the greatest probability of death? Which had the least probability? Use the graph in Data Table 7 to support your answer. B. Overall, does human mortality tend to be greatest at young ages or older ages? C. How many individuals were male, and how many were female? How many individuals were you unable to assign a gender to? D. Using the raw data in Data Table 4, calculate the average age at death for males and for females. What inferences can you make about male versus female age at death? E. If the government made significant cuts in social services, such as prenatal and infant care, how might your data be affected? www.HOLscience.com 13 ©Hands-On Labs, Inc. Experiment Population Ecology Population Ecology Hands-On Labs, Inc. Version 42-0281-00-02 Lab Report Assistant This document is not meant to be a substitute for a formal laboratory report. The Lab Report Assistant is simply a summary of the experiment’s questions, diagrams if needed, and data tables that should be addressed in a formal lab report. The intent is to facilitate students’ writing of lab reports by providing this information in an editable file which can be sent to an instructor. Exercise 1: Modeling Population Growth See next page www.HOLscience.com 14 ©Hands-On Labs, Inc. Experiment Population Ecology Data Table 1. Population Growth Model. Generation Initial Population Size (N) Number of Births (B) Number of Deaths (D) Final Population Size (N + B – D) Change in Population Size (Final – Initial) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 www.HOLscience.com 15 ©Hands-On Labs, Inc. Experiment Population Ecology Data Table 2. Population Size and Generations: Scatter Plot. Population Size Data Table 3. Population Size and Generations: Bar Graph. Population Size www.HOLscience.com 16 ©Hands-On Labs, Inc. Experiment Population Ecology Questions A. How many generations did it take to reach a population size of 100? B. Consider the mode of reproduction modeled in your population. Would sexual reproduction or asexual reproduction likely be the cause of a birth? Are individuals of the species likely or unlikely to have separate male and female sexes? C. Did the modeled population exhibit linear growth, exponential growth, or no pattern? Use Data Table 2 to support your answer. D. Were changes in population size greatest when the population was smaller or larger? Which generation exhibited the greatest change in size? Use Data Table 3 to support your answer. E. What resource constraints were placed on the modeled population? F. Could the modeled population exhibit indefinite growth? If so, how? Is indefinite growth observed in nature? Explain why or why not. www.HOLscience.com 17 ©Hands-On Labs, Inc. Experiment Population Ecology Exercise 2: Investigating a Human Population Data Table 4. Raw Data for Deceased Individuals. Cemetery Name and Location: Individual First Name Last Name Birth Year Death Year Age at Death Sex (M/F) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 www.HOLscience.com 18 ©Hands-On Labs, Inc. Experiment Population Ecology 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 www.HOLscience.com 19 ©Hands-On Labs, Inc. Experiment Population Ecology 69 70 71 72 73 74 75 76 77 78 79 80 Data Table 5. Summary of Deceased Individuals. Observations Data First birth year Last birth year First death year Last death year Number of individuals who died before 1950 Number of individuals who died after 1950 Number of males Number of females www.HOLscience.com 20 ©Hands-On Labs, Inc. Experiment Population Ecology Data Table 6. Demography Data. # Cohort (X) Number of Deaths (D) Frequency of Population in Cohort (d) Frequency of Survivorship Entering the Cohort (l) Probability of Death within a Cohort (Q) 1 1-9 1.00 2 10-19 3 20-29 4 30-39 5 40-49 6 50-59 7 60-69 8 70+ Total 80 1.00 Data Table 7. Probability of Death within Each Cohort. Probability of Death www.HOLscience.com 21 ©Hands-On Labs, Inc. Experiment Population Ecology Questions A. Which cohort had the greatest probability of death? Which had the least probability? Use the graph in Data Table 7 to support your answer. B. Overall, does human mortality tend to be greatest at young ages or older ages? C. How many individuals were male, and how many were female? How many individuals were you unable to assign a gender to? D. Using the raw data in Data Table 4, calculate the average age at death for males and for females. What inferences can you make about male versus female age at death? E. If the government made significant cuts in social services, such as prenatal and infant care, how might your data be affected? www.HOLscience.com 22 ©Hands-On Labs, Inc. Experiment Population Ecology

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!

Biology Labs

image9.jpg image10.jpg

Pre-Lab Questions

1. What are chromosomes made of?

2. Research the differences that exist between mitosis and binary fission. Identify at least one difference, and explain why it is significant.

3. Cancer is a disease related to uncontrolled cell division. Investigate two known causes for these rapidly dividing cells and use this knowledge to invent a drug that would inhibit the growth of cancer cells.

Experiment 1: Observation of Mitosis in a Plant Cell

In this experiment, we will look at the different stage of mitosis in an onion cell. Remember that mitosis only occupies one to two hours while interphase can take anywhere from 18 – 24 hours. Using this information and the data from your experiment, you can estimate the percentage of cells in each stage of the cell cycle.

image9.jpg

Materials

Onion (allium) Root Tip Digital Slide Images

 

Procedure:

Part 1: Calculating Time Spent in Each Cell Cycle Phase

1. The length of the cell cycle in the onion root tip is about 24 hours. Predict how many hours of the 24 hour cell cycle you think each step takes. Record your predictions, along with supporting evidence, in Table 1.

2. Examine the onion root tip slide images on the following pages. There are four images, each displaying a different field of view. Pick one of the images, and count the number of cells in each stage. Then count the total number of cells in the image. Record the image you selected and your counts in Table 2.

3. Calculate the time spent by a cell in each stage based on the 24 hour cycle:

Hours of Stage = 24 x Number of Cells in Stage 
  Total Number of Cells Counted

Part 2: Identifying Stages of the Cell Cycle

1. Observe the images of the root cap tip.

2. Locate a good example of a cell in each of the following stages: interphase, prophase, metaphase, anaphase, and telophase.

3. Draw the dividing cell in the appropriate area for each stage of the cell cycle, exactly as it appears. Include your drawings in Table 3.

image1.jpg
Onion Root Tip: 100X

image2.jpg
Onion Root Tip: 100X

image3.jpg
Onion Root Tip: 100X

image4.jpg
Onion Root Tip: 100X

Table 1: Mitosis Predictions
Predictions:  
Supporting Evidence:  
Table 2: Mitosis Data
Number of Cells in Each Stage Total Number of Cells Calculated % of Time Spent in Each Stage
Interphase:   Interphase:
Prophase:   Prophase:
Metaphase:   Metaphase:
Anaphase:   Anaphase:
Telophase:   Telophase:
Cytokinesis:   Cytokinesis:
Table 3: Stage Drawings
Cell Stage: Drawing:
Interphase:  
Prophase:  
Metaphase:  
Anaphase:  
Telophase:  
Cytokinesis:  

Post-Lab Questions

1. Label the arrows in the slide image below with the appropriate stage of the cell cycle.

image5.png

2. In what stage were most of the onion root tip cells? Based on what you know about cell cycle division, what does this imply about the life span of a cell?

3. Were there any stages of the cell cycle that you did not observe? How can you explain this using evidence from the cell cycle?

4. As a cell grows, what happens to its surface area to volume ratio? (Hint: Think of a balloon being blown up). How does this ratio change with respect to cell division?

5. What is the function of mitosis in a cell that is about to divide?

6. What would happen if mitosis were uncontrolled?

7. How accurate were your time predication for each stage of the cell cycle?

8. Discuss one observation that you found interesting while looking at the onion root tip cells.

Experiment 2: Tracking Chromosomal DNA Movement through Mitosis

image10.jpgAlthough mitosis and meiosis share similarities, they are different processes and create very different results. In this experiment, you will follow the movement of the chromosomes through mitosis to create somatic daughter cells.

Materials

2 Sets of Different Colored Pop-it® Beads (32 of each – these may be any color) (8) 5-Holed Pop-it® Beads (used as centromeres)

 

Procedure

Genetic content is replicated during interphase. DNA exists as loose molecular strands called chromatin; it has not condensed to form chromosomes yet.

Sister chromatids begin coiling into chromosomes during prophase. Begin your experiment here:

1. Build a pair of replicated, homologous chromosomes. 10 beads should be used to create each individual sister chromatid (20 beads per chromosome pair). Two five-holed beads represent each centromere. To do this…

image6.jpg
Figure 5: Bead set-up. The blue beads represent one pair of sister chromatids and the black beads represent a second pair of sister chromatids. The black and blue pair are homologous.

a. Start with 20 beads of one color to create your first sister chromatid pair. Five beads must be snapped together for each of the four different strands. Two strands create the first chromatid, and two strands create the second chromatid.

b. Place one five-holed bead flat on a work surface with the node positioned up. Then, snap two of the four strands into the bead to create an “I” shaped sister chromatid. Repeat this step with the other two strands and another five-holed bead.

c. Once both sister chromatids are constructed, connect them by their five-holed beads creating an “X” shape.

d. Repeat this process using 20 new beads (of a different color) to create the second sister chromatid pair. See Figure 5 for reference.

2. Assemble a second pair of replicated sister chromatids; this time using 12 beads, instead of 20, per pair (six beads per each complete sister chromatid strand).

image7.jpg
Figure 6: Second set of replicated chromosomes.

3. Repeat this process using 12 new beads (of a different color) to create the second set of sister chromatids. See Figure 6 for reference.

4. Configure the chromosomes as they would appear in each of the stages of the cell cycle (prophase, metaphase, anaphase, telophase, and cytokinesis). Diagram the images for each stage in the section titled “Cell Cycle Division: Mitosis Beads Diagram”. Be sure to indicate the number of chromosomes present in each cell for each phase.

Cell Cycle Division: Mitosis Beads Diagram:

Prophase

 

Metaphase

 

Anaphase

 

Telophase

 

Cytokinesis

Post-Lab Questions

1. How many chromosomes did each of your daughter cells contain?

2. Why is it important for each daughter cell to contain information identical to the parent cell?

3. How often do human skin cells divide? Why might that be? Compare this rate to how frequently human neurons divide. What do you notice?

4. Hypothesize what would happen if the sister chromatids did not split equally during anaphase of mitosis.

Experiment 3: The Importance of Cell Cycle Control

Some environmental factors can cause genetic mutations which result in a lack of proper cell cycle control (mitosis). When this happens, the possibility for uncontrolled cell growth occurs. In some instances, uncontrolled growth can lead to tumors, which are often associated with cancer, or other biological diseases.

image11.jpgIn this experiment, you will review some of the karyotypic differences which can be observed when comparing normal, controlled cell growth and abnormal, uncontrolled cell growth. A karyotype is an image of the complete set of diploid chromosomes in a single cell.

Materials

*Computer Access *Internet Access

 

*You Must Provide

 
   

Procedure

1. Begin by constructing a hypothesis to explain what differences you might observe when comparing the karyotypes of human cells which experience normal cell cycle control versus cancerous cells (which experience abnormal, or a lack of, cell cycle control). Record your hypothesis in Post-Lab Question 1. Note: Be sure to include what you expect to observe, and why you think you will observe these features. Think about what you know about cancerous cell growth to help construct this information

2. Go online to find some images of abnormal karyotypes, and normal karyotypes. The best results will come from search terms such as “abnormal karyotype”, “HeLa cells”, “normal karyotype”, “abnormal chromosomes”, etc. Be sure to use dependable resources which have been peer-reviewed

3. Identify at least five abnormalities in the abnormal images. Then, list and draw each image in the Data section at the end of this experiment. Do these abnormalities agree with your original hypothesis? Hint: It may be helpful to count the number of chromosomes, count the number of pairs, compare the sizes of homologous chromosomes, look for any missing or additional genetic markers/flags, etc.

Data

1.

 

2.

 

3.

 

4.

 

5.

Post-Lab Questions

1. Record your hypothesis from Step 1 in the Procedure section here.

2. What do your results indicate about cell cycle control?

3. Suppose a person developed a mutation in a somatic cell which diminishes the performance of the body’s natural cell cycle control proteins. This mutation resulted in cancer, but was effectively treated with a cocktail of cancer-fighting techniques. Is it possible for this person’s future children to inherit this cancer-causing mutation? Be specific when you explain why or why not.

Pre-Lab Questions

1. Arrange the following molecules from least to most specific with respect to the original nucleotide sequence: RNA, DNA, Amino Acid, Protein

2. Identify two structural differences between DNA and RNA.

3. Suppose you are performing an experiment in which you must use heat to denature a double helix and create two single stranded pieces. Based on what you know about nucleotide bonding, do you think the nucleotides will all denature at the same time? Use scientific reasoning to explain why.

Experiment 1: Coding

In this experiment, you will model the effects of mutations on the genetic code. Some mutations cause no structural or functional change to proteins while others can have devastating affects on an organism.

image12.png

Materials

Red Beads

Blue Beads

 

Yellow Beads

Green Beads

   

Procedure:

1. Using the red, blue, yellow and green beads, devise and lay out a three color code for each of the following letters (codon). For example Z = green : red : green.

In the spaces below the letter, record your “code”.

C: E: H: I: K: L:
bbb ggg rrr yyy bgr Grb
M: O: S: T: U:
yrg yby byb Rgr Gyg
Create codons for: Start: Stop: Space:
  bbr ggr yyr

2. Using this code, align the beads corresponding to the appropriate letter to write the following sentence (don’t forget start, space and stop): The mouse likes most cheese

a. How many beads did you use? 87

There are multiple ways your cells can read a sequence of DNA and build slightly different proteins from the same strand. We will not go through the process here, but as an illustration of this “alternate splicing”, remove codons (beads) 52 – 66 from your sentence above.

b. What does the sentence say now? (re-write the entire sentence) The mouse likes cheese

Mutations are simply changes in the sequence of nucleotides. There are three ways this occurs:

1. Change a nucleotide(s)

2. Remove a nucleotide(s)

3. Add a nucleotide(s)

3. Using the sentence from exercise 1B:

a. Change the 24th bead to a different color. What does the sentence say now (re-read the entire sentence)? Does the sentence still make sense?

The moose likes cheese

b. Replace the 24th bead and remove the 20th bead (remember what was there). What does the sentence say (re-read the entire sentence)? Does the sentence still make sense? If it doesn’t make sense as a sentence, are there any words that do? If so, what words still make sense?

The muse likes cheese

c. Replace the 20th bead and add one between bead numbers 50 and 51. What does the sentence say now? Does the sentence still make sense?

d. In 3.a (above) you mutated one letter. What role do you think the redundancy of the genetic code plays in this type of change?

e. Based on your observations, why do you suppose the mutations we made in 3.b and 3.c are called frame shift mutations?

f. Which mutations do you suspect have the greatest consequence? Why?

Experiment 2: Transcription and Translation

DNA codes for all of the proteins manufactured by any organism (including you!). It is valuable, highly informative and securely protected in the nucleus of every cell. Consider the following analogy:

An architect spends months or years designing a building. Her original drawings are valuable and informative. She will not provide the original copy to everyone involved in constructing the building. Instead, she gives the electrician a copy with the information she needs to build the electrical system. She will do the same for the plumbers, the framers, the roofers and everyone else who needs to play a role to build the structure. These are subsets of the information contained in the original copy. Your cell does the same thing. The “original drawings” are contained in your DNA which is securely stored in the nucleus.

Nuclear DNA is “opened up” by an enzyme called helicase, and a subset of information is transcribed into RNA. RNA is a single strand version of DNA, where the nucleotide uracil, replaces thymine. The copies are sent from the nucleus to the cytoplasm in the form of messenger RNA (mRNA ). Once in the cytoplasm, transfer RNA (tRNA) links to the codons and aligns the proper amino acids, based on the mRNA sequence. Protein builders called ribosomes float around in the cytoplasm, latch onto the strand of mRNA and sequentially link the amino acids together that the tRNA has lined up for them. This construction of proteins from the mRNA is known as translation.

image13.jpg

Materials

Blue beads Green beads Red beads Yellow beads Pop-it® beads (8 different colors) *Pen or pencil

 

*You Must Provide In this experiment:

· Regular beads are used as nucleotides.

· Pop-it® beads are used as amino acids.

 

Procedure

1. Use a pen or pencil to write a five word sentence using no more than eight different letters in the space below.

2. Now, use the red, blue, green, and yellow beads to form “codons” (three beads) for each letter in your sentence. Then, create codons to represent the “start, “space” and stop” regions within your sentence. Write the sentence using the beads in the space below:

3. How many beads did you use?

4. Assign one Pop-It® bead to represent each codon. You do not need to assign a Pop-It® bead for the start, stop and space regions. These will be your amino acids.

5. Connect the Pop-It® beads to build the chain of amino acids that code for your sentence (leave out the start, stop, and space regions).

6. How many different amino acids did you use?

7. How many total amino acids did you use?

Experiment 3: DNA Extraction

image14.jpgMuch can be learned from studying an organism’s DNA. The first step to doing this is extracting DNA from cells. In this experiment, you will isolate DNA from the cells of fruit.

Materials

(1) 10 mL Graduated Cylinder (2) 100 mL Beakers 15 cm Cheesecloth 1 Resealable Bag 1 Rubber Band (Large. Contains latex; please wear gloves when handling if you have a latex allergy). Standing Test Tube Wooden Stir Stick *Fresh, Soft Fruit (e.g., Grapes, Strawberries, Banana, etc.)

 

*Scissors **DNA Extraction Solution ***Ice Cold Ethanol *You Must Provide **Contains sodium chloride, detergent and water ***For ice cold ethanol, store in the freezer 60 minutes before use.

 

REMINDER: You are REQUIRED to video yourself performing steps 3 through 9 of the procedure below. You MUST submit the video with the lab to receive credit for this experiment.

Procedure:

1. If you have not done so, prepare the ethanol by placing it in a freezer for approximately 60 minutes.

2. Put pieces of a soft fruit into a plastic zipper bag and mash with your fist. The amount of food should be equal to the size of approximately five grapes.

3. Use the 10 mL graduated cylinder to measure 10 mL of the DNA Extraction Solution. Transfer the solution from the cylinder to the bag with the fruit it in. Seal the bag completely.

4. Mix well by kneading the bag for two minutes.

5. Create a filter by placing the center of the cheesecloth over the mouth of the standing test tube, pushing it into the tube about two inches, and securing the cheesecloth with a rubber band around the top of the test tube.

6. Cut a hole in the corner of the bag and filter your extraction by pouring it into the cheesecloth. You will need to keep the filtered solution which passes through the cheese cloth into the standing test tube.

7. Rinse the 10 mL graduated cylinder, and measure five mL of ice-cold ethanol. Then, while holding the standing test tube at a 45° angle, slowly transfer the ethanol into the standing test tube with the filtered solution.

image8.jpg
Figure 6: DNA extraction. The color has been enhanced by dying the fruit with a substance that glows under black light.

8. DNA will precipitate (come out of solution) after the ethanol has been added to the solution. Let the test tube sit undisturbed for 2 – 5 minutes. You should begin to see air bubbles form at the boundary line between the ethanol and the filtered fruit solution. Bubbles will form near the top, and you will eventually see the DNA float to the top of the ethanol.

9. Gently insert the stir stick into the test tube. Slowly raise and lower the tip several times to spool and collect the DNA. If there is an insufficient amount of DNA available, it may not float to the top of the solution in a form that can be easily spooled or removed from the tube. However, the DNA will still be visible as white/clear clusters by gently stirring the solution and pushing the clusters around the top.

Post-Lab Questions

1. What is the texture and consistency of the DNA?

2. Why did we use a salt in the extraction solution?

3. Is the DNA soluble in the aqueous solution or alcohol?

4. What else might be in the ethanol/aqueous interface? How could you eliminate this?

5. Which DNA bases pair with each other? How many hydrogen bonds are shared by each pair?

6. How is information to make proteins passed on through generations?

Pre-Lab Questions

1. In a species of mice, brown fur color is dominant to white fur color. When a brown mouse is crossed with a white mouse all of their offspring have brown fur. Why did none of the offspring have white fur?

2. Can a person’s genotype be determine by their phenotype? Why or why not?

3. Are incomplete dominant and co-dominant patterns of inheritance found in human traits? If yes, give examples of each.

4. Consider the following genotype: Yy Ss Hh. We have now added the gene for height: Tall (H) or Short (h).

a. How many different gamete combinations can be produced?

b. Many traits (phenotypes), like eye color, are controlled by multiple genes. If eye color were controlled by the number of genes indicated below, how many possible genotype combinations would there be in the following scenarios?

5 Eye Color Genes:

10 Eye Color Genes:

20 Eye Color Genes:

Experiment 1: Punnett Square Crosses

In this experiment you will use monohybrid and dihybrid crosses to predict patterns of inheritance.

image15.jpg

Materials

Blue Beads Green Beads Red Beads

 

Yellow Beads (2) 100 mL Beakers Permanent Marker

   

Procedure:

Part 1: Punnett Squares

1. Set up and complete Punnett squares for each of the following crosses: (remember Y = yellow, and y = blue)

Y Y and Y y Y Y and y y

2. What are the resulting phenotypes?

3. Are there any blue kernels? How can you tell?

4. Set up and complete a Punnett squares for a cross of two of the F1 from Step 1 (above).

5. What are the genotypes of the F2 generation?

6. What are their phenotypes?

7. Are there more or less blue kernels than in the F1 generation?

8. Identify the four possible gametes produced by the following individuals:

a) YY Ss:  ______ ______ ______  ______
b) Yy Ss: ______ ______ ______ ______
c) Create a Punnett square using these gametes as P and determine the genotypes of the F1:

What are the phenotypes? What is the ratio of those phenotypes?

Part 2 and 3 Setup

1. Use the permanent marker to label the two 100 mL beakers as “1” and “2”.

2. Pour 50 of the blue beads and 50 of the yellow beads into Beaker 1. Sift or stir the beads around to create a homogenous mixture.

3. Pour 50 of the red beads and 50 of the green beads into Beaker 2. Sift or stir the beads around to create a homogenous mixture.

Assumptions for the remainder of the experiment:

· Beaker 1 contains beads that are either yellow or blue.

· Beaker 2 contains beads that are either green or red.

· Both beakers contain approximately the same number of each colored bead.

· These colors correspond to the following traits (remember that Y/y is for kernel color and S/s is for smooth/wrinkled):

1. Yellow (Y) vs. Blue (y)

2. Green (G) vs. Red (g).

Part 2: Monohybrid Cross

1. Randomly (without looking) take two beads out of Beaker 1. This is the genotype of Individual #1. Record the genotype in Table 1. Do not put these beads back into the beaker.

Table 1: Parent Genotypes: Monohybrid Crosses
Generation Genotype of Individual 1 Genotype of Individual 2
P    
P1    
P2    
P3    
P4    

2. Repeat Step 1 for Individual #2. These two genotypes represent the parents (generation P) for the next generation.

3. Set up a Punnett square and determine the genotypes and phenotypes for this cross. Record your data in Table 2

4. Repeat Step 3 four more times (for a total of five subsequent generations). Return the beads to their respective beakers when finished.

Table 2: Generation Data Produced by Monohybrid Crosses
Parents Possible Offspring Genotypes Possible Offspring Phenotypes Genotype Ratio Phenotype Ratio
P        
P1        
P2        
P3        
P4        

Post-Lab Questions

Part 2: Monohybrid Cross

1. How much genotypic variation do you find in the randomly picked parents of your crosses?

2. How much in the offspring?

3. How much phenotypic variation?

4. Is the ratio of observed phenotypes the same as the ratio of predicted phenotypes? Why or why not?

5. Pool all of the offspring from your five replicates. How much phenotypic variation do you find?

6. What is the difference between genes and alleles?

7. How might protein synthesis execute differently if a mutation occurs?

8. Organisms heterozygous for a recessive trait are often called carriers of that trait. What does that mean?

9. In peas, green pods (G) are dominant over yellow pods. If a homozygous dominant plant is crossed with a homozygous recessive plant, what will be the phenotype of the F1 generation? If two plants from the F1 generation are crossed, what will the phenotype of their offspring be?

  © 2013 eScience Labs, LLC. All Rights Reserved    

image12.png

image16.jpg image17.jpg image18.png image19.jpg

 
Do you need a similar assignment done for you from scratch? Order now!
Use Discount Code "Newclient" for a 15% Discount!